in

Percée de l’IA : découverte de plus d’une centaine de nouveaux absorbeurs cosmiques

SciTechDaily

Le télescope Sloan Digital Sky Survey au sol a capturé une grande quantité de spectres de quasars du premier univers. Un réseau neuronal profond d’IA entraîné a, pour la première fois, découvert des sondes de raies d’absorption de carbone neutre faibles et record créées par le milieu froid des premières galaxies au sein de ces données spectrales de quasar. Crédit : YI Yuechen

Les scientifiques ont utilisé l’apprentissage profond pour analyser les données spectrales des quasars de SDSS-III, détectant avec succès 107 absorbeurs de carbone neutre rares et fournissant de nouvelles informations sur l’évolution précoce des galaxies. Leurs méthodes pourraient changer la façon dont les astronomes utilisent l’IA pour étudier l’univers, en complément d’autres outils de recherche comme le Télescope spatial James Webb.

Récemment, des chercheurs ont recherché des signaux faibles rares dans les données spectrales des quasars publiées par le programme Sloan Digital Sky Survey III (SDSS-III) à l'aide de réseaux neuronaux d'apprentissage profond. En introduisant une nouvelle méthode pour explorer la formation et l’évolution des galaxies, l’équipe a présenté le potentiel de l’intelligence artificielle (IA) dans l’identification de signaux faibles rares dans les mégadonnées astronomiques. Cette étude, publiée récemment dans Avis mensuels de la Royal Astronomical Societya été menée par une équipe internationale dirigée par le professeur Jian Ge de l'Observatoire astronomique de Shanghai de l'Académie chinoise des sciences.

Défis liés à la détection des absorbeurs de carbone neutre

Les « absorbeurs de carbone neutre » provenant des gaz froids et de la poussière de l’univers servent de sondes cruciales pour étudier la formation et l’évolution des galaxies. Cependant, les signaux des raies d’absorption du carbone neutre sont faibles et extrêmement rares. Les astronomes ont eu du mal à détecter ces absorbeurs dans des ensembles massifs de données spectrales de quasar en utilisant des méthodes de corrélation conventionnelles.

« C'est comme chercher une aiguille dans une botte de foin », a déclaré le professeur Ge. En 2015, 66 absorbeurs de carbone neutre ont été découverts dans les spectres de dizaines de milliers de quasars publiés précédemment par le SDSS, ce qui représente le plus grand nombre d'échantillons obtenus.

Percée dans la détection des absorbeurs

Dans cette étude, l'équipe du professeur Ge a conçu et formé des réseaux neuronaux profonds avec un grand nombre d'échantillons simulés de raies d'absorption de carbone neutre basés sur des observations réelles. En appliquant ces réseaux neuronaux bien entraînés aux données SDSS-III, l’équipe a découvert 107 absorbeurs de carbone neutre extrêmement rares, doublant le nombre d’échantillons obtenus en 2015, et détecté des signaux plus faibles qu’auparavant.

Améliorer la détection et comprendre l'évolution de la galaxie

En empilant les spectres de nombreux absorbeurs de carbone neutre, l’équipe a considérablement amélioré la capacité de détecter l’abondance de divers éléments et de mesurer directement la perte de métal dans les gaz provoquée par la poussière. Les résultats ont indiqué que ces premières galaxies, contenant des sondes absorbantes de carbone neutre, ont subi une évolution physique et chimique rapide alors que l’univers n’avait qu’environ trois milliards d’années (l’âge actuel de l’univers est de 13,8 milliards). Ces galaxies entraient dans un état d'évolution entre le Grand Nuage de Magellan (LMC) et le voie Lactée (MW), produisant une quantité substantielle de métaux, dont certains se lient pour former des particules de poussière, conduisant à l'effet observé de rougeur de la poussière.

Complétant les découvertes du télescope spatial James Webb

Cette découverte corrobore de manière indépendante les découvertes récentes du télescope spatial James Webb (JWST) qui ont détecté de la poussière de carbone semblable à du diamant dans les premières étoiles de l'univers, suggérant que certaines galaxies évoluent beaucoup plus rapidement que prévu, remettant en question les modèles existants de formation et d'évolution des galaxies.

Contrairement au JWST, qui mène des recherches sur les spectres d’émission des galaxies, cette étude étudie les premières galaxies en observant les spectres d’absorption des quasars. L'application de réseaux neuronaux bien entraînés pour trouver des absorbeurs de carbone neutres fournit un nouvel outil pour les recherches futures sur l'évolution précoce de l'univers et des galaxies, complétant les méthodes de recherche du JWST.

Orientations futures et innovations en IA

« Il est nécessaire de développer des algorithmes d'IA innovants capables d'explorer rapidement, précisément et de manière exhaustive les signaux rares et faibles dans des données astronomiques massives », a déclaré le professeur Ge. L’équipe vise à promouvoir la méthode introduite dans cette étude pour la reconnaissance d’images en extrayant plusieurs structures associées pour créer des images artificielles « multistructures » pour une formation et une détection efficaces des signaux d’image faibles.

SciTechDaily

L'énergie du ciel : comment les drones peuvent produire de l'électricité

SciTechDaily

L'éclat secret des plantes : la clé de la NASA pour prédire les sécheresses soudaines